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the adaptive solution of evolutionary partial differential
equations (PDEs) in one space dimension. For unsteadyA coordinate transformation approach is described that enables

pseudospectral methods to be applied efficiently to unsteady differ- problems, adaptive methods may be classified as static or
ential problems with steep solutions. The work is an extension of a dynamic. In the static approach the numerical solution is
method presented by Mulholland, Huang, and Sloan for the adaptive advanced in time on a fixed nonuniform grid, and afterpseudospectral solution of steady problems. A coarse grid is gener-

each step (or series of steps) a regridding is carried out toated by a moving mesh finite difference method that is based on
give new nodal locations that are adapted in some sense toequidistribution, and this grid is used to construct a time-dependent

coordinate transformation. A sequence of spatial transformations the computed solution. This is followed by an interpolation
may be generated at discrete points in time, or a single transforma- process that yields approximations on the new grid to serve
tion may be generated as a continuous function of space and time.

as initial values for the next time step. In the static methodThe differential problem is transformed by the coordinate transfor-
there is no essential coupling between the discretisationmation and then solved using a method that combines pseudospec-

tral discretisation in space with a suitable integrator in time. Numeri- of the PDE and the grid generation. The reader is referred
cal results are presented for unsteady problems in one space to papers by Sanz-Serna and Christie [16] and Bieterman
dimension. Q 1997 Academic Press and Babuška [2] for illustrations of the static regridding ap-

proach.
In the dynamic adaptive methods there is a coupling

1. INTRODUCTION
between the approximate solution of the PDE and the
mesh generation. These methods—often referred to asAdaptive grid methods have been used widely during
moving mesh methods—are potentially very powerful. Thethe last few years for solving differential equations with
mesh evolves with the solution in some near-optimal man-steep, but continuous solutions. There is ample numerical
ner, and this enables sharp fronts to be computed with aevidence that significant improvements in accuracy and
high degree of accuracy. The key disadvantage of the dy-computational efficiency can be obtained by adapting mesh
namic approach is that a large set of unknowns has to bepoints so that they are concentrated in regions of large
evaluated at each time step. Dynamic methods that havesolution variation. A useful approach in adaptive schemes
attracted a considerable interest are the moving finite ele-is the concept of equidistribution, which seeks to distribute
ment method of Miller and Miller [13, 14] and the movingsome function uniformly over the domain of the problem.
finite difference method of Dorfi and Drury [6]. Recently,This function is usually some measure of the local computa-
Huang, Ren, and Russell [8, 9] have presented severaltional error or the local solution variation. The text by
moving mesh PDEs that are based on the concept of equi-Thompson et al. [17] and the paper by Huang and Sloan
distribution. Their moving mesh equations have solutions[11] give an interpretation of equidistribution in the context
that are continuous in space and time, and the equationsof adaptive grid generation for steady, one- and two-di-
are designed so that the nodal locations satisfy an equidis-mensional problems. An equidistribution principle is de-
tribution principle (EP). In practice, the moving meshveloped in [11] and it is used to formulate a finite difference
equations in [8, 9] are conjoined with the given PDE ingrid generation algorithm in two space dimensions.

The aim of this paper is to describe a robust method for the discretisation process.
Our purpose here is to present a moving mesh method

that incorporates a pseudospectral (PS) post-processing
* Supported by the Engineering and Physical Sciences Research Coun- step. We give an extension of a method for the adaptivecil (EPSRC).

PS solution of steady problems that was presented recently† Supported by the University of Strathclyde and by the ORS
Awards Scheme. by Mulholland, Huang, and Sloan [15]. This earlier work
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by Mulholland et al. showed how to improve the effective- [15] for steady problems, a Chebyshev polynomial expan-
sion is fitted to the coarse mesh nodal values at time t 1 Dtness of PS methods for steep solutions in one and two

space dimensions by adapting a coordinate transformation to yield a coordinate transformation. The post-processed
solution of the transformed equations is then carried for-to a quickly computed finite difference solution. Applica-

tion of the coordinate transformation smooths out regions ward to time t 1 Dt using a Crank–Nicolson or BDF (see,
for example [12]) time step and PS discretisation in theof high gradient and a highly accurate PS solution is then

obtained in the transformed spatial coordinate. Coordinate computational space coordinate. Section 3 deals with some
of the dynamics of the DAE moving mesh method. Intransformations have been used by several authors as a

means of smoothing out steep fronts prior to PS discretisa- particular, we show that there is no node crossing in our
implementation and that a local quasi-uniformity conditiontion. However, the transformation adopted has generally

been based on functions of known structure, and the quali- is maintained. The continuous time algorithm is presented
in Section 4. In this case, the coarse mesh solution is com-tative nature of the solution has been known a priori (for

example, see [1] and references therein). The transforma- puted over many time steps and the array of nodal values
at discrete values of computational coordinate and time istion presented in [15], on the other hand, uses many param-

eters, and these are determined by adapting the map to used to construct a continuous map in one space dimension
and time. The transformed equation is then solved usingfeatures of the solution that have been generated numeri-

cally: this approach gives the method wide applicability. a BDF method in time coupled with PS discretisation in
space. Numerical results are given in Sections 2 and 4 toHere, the numerically generated transformation idea is

applied to time-dependent problems. A coarse grid is gen- illustrate the performances of the algorithms, and Section
5 contains conclusions and comments on our PS algorithms.erated by a moving mesh finite difference method that is

based on equidistribution, and this grid is used to construct
2. DISCRETE TIME ALGORITHMa time-dependent coordinate transformation. It is shown

that the transformation may be generated at discrete points
2.1. Test Problemsin time—essentially a map between physical and computa-

tional coordinates in space. We shall refer to the solution All numerical computations described in the paper were
process based on this mode of map generation as the dis- performed on problems associated with the one-dimen-
crete time algorithm. We also show that the moving mesh sional Burgers equation, and reference is made to these
finite difference solution at many discrete time values may problems at several points within the paper. It is appro-
be used to generate a transformation in which the physical priate, therefore, to describe the algorithms as they apply
coordinate is expressed as a continuous function of both to Burgers’ equation, noting, of course, that they will have
time and computational space coordinate. This second for- much wider applicability. Furthermore, it is convenient to
mulation enables the PDE to be transformed to coordi- present the test problems at this preliminary stage. Accord-
nates in which the solution is extremely smooth in both ingly, we consider the PDE
time and space, and this provides ideal conditions for a
highly accurate solution technique based on PS discretisa- u

t
1 u

u
x

2 «
2u
x2 5 0, x [ (xL , xR), t . 0, (2.1)tion in space conjoined with an accurate integrator in time.

This approach will be called the continuous time algorithm.
The coarse adapted mesh is readily generated using one subject to initial and boundary conditions

of the moving mesh partial differential equations
u(x, 0) 5 u0(x), xL # x # xR , (2.2)(MMPDEs) of Huang, Ren, and Russell [8]. However,

numerical experiments persuaded us that there are gains u(xL , t) 5 bL(t), u(xR , t) 5 bR(t), t $ 0. (2.3)
in accuracy and efficiency if the MMPDE is replaced by
a method that couples the numerical solution of the PDE Here « is a positive constant that is small (« ! 1) in the
with the algebraic condition arising from the equidistribu- cases of computational interest. The first two test problems
tion constraint. The mesh is thus generated by solving given below have been used in computational experiments
a system of differential algebraic equations (DAEs)—a by Blom, Sanz-Serna, and Verwer [3], and the third has
process that has been described as stable by Coyle, Flah- been used in numerical tests by Canuto et al. [4]. Exact
erty, and Ludwig [5]. The DAE approach has been adopted solutions for the second and third problems have been
throughout our numerical computations. given by Whitham [18].

The discrete time algorithm is described in Section 2.
Problem I. This is the problem with exact solutionGiven the coarse mesh solution and the PS post-processed

solution at time t, the moving mesh method is used to
obtain the coarse mesh solution at time t 1 Dt. Employing u(x, t) 5 c 2 d tanh H d

2«
(x 2 ct 2 x0)J, (2.4)

a process analogous to that adopted by Mulholland et al.



282 MULHOLLAND, QIU, AND SLOAN

where c 5 As(u2 1 u1), d 5 As(u2 2 u1), with d . 0. It x and h denote the spatial coordinates in physical and
computational space, respectively, and the time-dependentdescribes a travelling front joining the upstream state u2

and the downstream state u1. The front moves with velocity map (2.7) from the computational domain, Dc , to the physi-
cal domain, Dp , is constructed using an EP. At time t, thec and is initially at location x 5 x0 . The exact solution

provides the initial and boundary values. The boundaries map (2.7) defines a set of nodes on Dp that corresponds
to a given uniform mesh on Dc [11]. Without loss of gener-are placed at xL 5 0, xR 5 1, and the parameter values

used are u2 5 1, u1 5 0, x0 5 Af. ality we choose Dc to be [21, 1] , R and let (2.7) relate
the evenly spaced nodes

Problem II. This problem has exact solution

hi 5 21 1
2i
n

, i 5 0, 1, ..., n, (2.8)
u(x, t) 5 1 2 0.9

r1

r1 1 r2 1 r3
2 0.5

r2

r1 1 r2 1 r3
, (2.5)

to the nodes hxijn
i50 in [xL , xR] 5 Dp . Herewhere

xL 5 x0(t) , x1(t) , ? ? ? , xn(t) 5 xR , ;t $ 0,
r1 5 exp S2

x 2 0.5
20«

2
99t

400«
D,

and

r2 5 exp S2
x 2 0.5

4«
2

3t
16«

D, r3 5 exp S2
x 2 3/8

2«
D.

xi(t) 5 x(hi , t), i 5 0, 1, ..., n. (2.9)

This solution represents two fronts that merge as time Under the transformation (2.7) the dependent variable in
evolves. As in the first problem, the boundaries are placed (2.1) becomes u(x(h, t), t), and this is denoted by w(h, t).
at xL 5 0, xR 5 1. The aim is to follow the time evolution of the approximate

solution at moving nodes (2.9), these being related by theProblem III. The third problem has a solution that is
map (2.7) to the fixed nodes (2.8) in Dc . It is convenient,2f-periodic in space, and it represents a wave moving with
therefore, to express the time derivative in (2.1) as a deriva-velocity c in the direction of increasing x. The exact solu-
tive along lines of constant h, and this requires the relationtion is

w
t

5
u
t

1
u
x

x
t

, (2.10)u(x, t) 5 c 2 2«
(f/x)(x 2 ct, t 1 1)

f(x 2 ct, t 1 1)
, (2.6)

in the obvious notation. If u/t is eliminated from thewhere
differential equation (2.1) by means of (2.10) we obtain

f(x, t) 5 Oy
n52y

exp(2(x 2 (2n 1 1)f)2/4«t).
u̇ 2 ẋ

u
x

1 u
u
x

2 «
2u
x2 5 0, (2.11)

For this problem the boundaries are placed at xL and xL 1
2f, and xL will be specified as computational results are where u̇ ; w/t and ẋ ; x/t denote derivatives in which
presented. The parameter c is set to the value 4 in all h is held constant.
computations. Note that the exact solution is given incor- In the moving mesh method a mesh generating equation
rectly in Canuto [4]. based on equidistribution is conjoined with (2.11) to give

a system of equations that determines the time evolution
2.2. Formulation of Algorithm of x(h, t) and u(x(h, t), t) 5 w(h, t) at nodes (2.8). We

seek approximations to the time-dependent vectorsInitially, we outline the moving mesh method that is
hxijn

i50 and huijn
i50 , whereused to generate the coarse mesh solution. To this end,

Eq. (2.1) is recast in terms of independent variables h and
ui(t) 5 u(x(hi , t), t) 5 wi(t), (2.12)t, where h is defined by a one-to-one coordinate transfor-

mation of the form
and xi(t) is given by (2.9). The semi-discrete version of
(2.11) that we use in the approximation process isx 5 x(h, t). (2.7)
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for i 5 1, 2, ..., n 2 1, with
u̇i 2 ẋi

ui11 2 ui21

xi11 2 xi21
1 ui

ui11 2 ui21

xi11 2 xi21
(2.13) x0(t) 5 xL and xn(t) 5 xR . (2.21)

5
2«

xi11 2 xi21
Sui11 2 ui

xi11 2 xi
2

ui 2 ui21

xi 2 xi21
D

In Eq. (2.20), M̃i11/2 is a smoothed monitor function defined
as in [11, 15] by

for i 5 1, 2, ..., n 2 1, with boundary conditions

u0(t) 5 bL(t), un(t) 5 bR(t), t $ 0. (2.14) M̃i11/2 5
oi1p

k5i2p Mk11/2(q/(q 1 1))uk2iu

oi1p
k5i2p (q/(q 1 1))uk2i u

, (2.22)

Following Huang et al. [8] we use the EP

whereEx(h,t)

xL

M(s, t) ds 5 hu(t), (2.15)

Mi11/2 5 !1 1 a2 Sui11 2 ui

xi11 2 xi
D2

, (2.23)where

u(t) 5 ExR

xL

M(s, t) ds. (2.16) q is a positive real number, and p is a non-negative integer.
In all computations involving the smoothing process (2.22)
we set the parameter q to the value 2.

M denotes the monitor function that has to be equally
The data required for the time-dependent coordinate

distributed between nodes in Dp , and here we use a func-
transformation may be generated by a numerical integra-

tion based on scaled arc-length [11] defined by
tion of the moving mesh equations (2.13) and (2.20). We
performed numerical experiments using these equations,
with various values selected for the parameter t in (2.20).M(x, t) 5 !1 1 a2 Su

xD2

, (2.17)
The computations indicated that accuracy improves as t
decreases, but the differential system becomes very stiff

where a is a real parameter that determines the extent when t ! 1, and there is a corresponding increase in CPU
to which the solution gradient influences grid placement. time. Computational efficiency is improved, with no dimi-
Differentiation of (2.15) with respect to h gives the differ- nution in accuracy, if (2.20) is replaced by the algebraic
ential form of the EP, equation

M̃i11/2(xi11 2 xi) 2 M̃i21/2(xi 2 xi21) 5 0. (2.24)


h
(M(x(h, t), t)



h
x(h, t)) 5 0. (2.18)

Apart from preliminary experiments with (2.20), all coarseHuang et al. [8] use (2.18) to derive a series of MMPDEs,
mesh generation presented in this paper is effected usingand numerical experiments described in [9] suggest that
the DAE consisting of (2.13) and (2.24), with boundarythe most accurate of these is
conditions (2.14) and (2.21). To provide initial conditions
for the time integration we obtain hxijn21

i51 by solving the
steady equidistribution problem (2.24), with ui ; u0(xi) in2ẋ

h2 5 2
1
t



h SM
x
hD, (2.19)

the monitor function. The locations of the equidistributed
nodes, together with ui(0) 5 u0(xi), for i 5 1, 2, ..., n 2 1,

in which t is a small positive parameter (ideally, 0 , t ! serve as initial conditions.
1). If the spatial derivatives in this equation are discretised Equations (2.13) and (2.24) are integrated on a fairly
by second-order central differences on the grid (2.8) we coarse mesh using a first-order backward Euler method
obtain the semi-discrete system of moving mesh equations for (2.13) (although low in accuracy, it is stable for stiff
defined by systems). At each integration step the nonlinear system of

2(n 2 1) algebraic equations is solved by a Newton itera-
tion with exact Jacobian. Continuation in a and «, as de-ẋi21 2 2ẋi 1 ẋi11 5 2

1
t
FM̃i11/2(xi11 2 xi)

(2.20)
scribed for steady problems in Mulholland et al. [15] is
used at time zero, but a and « are fixed at all subsequent
time steps. When the finite difference solution has been2 M̃i21/2(xi 2 xi21)G,
computed at time t, a smooth map



284 MULHOLLAND, QIU, AND SLOAN

x 5 x(j, t) (2.25) vides an accurate solution at the time values t0 , t1 , ... that
are used in the moving mesh finite difference method, and
the moving mesh solution is carried to a typical time levelis constructed by fitting a polynomial of degree m to the
ts11 in preparation for the PS solution at this time. Thisvalues hxijm

i50 that approximate x at the Chebyshev nodes
means that the coefficients ak(t) in the map (2.27) are
available at ts and ts11 , which provides hx(ji , tn) 5 xn

ijN
i50ji 5 2cos

fi
m

, i 5 0, 1, ..., m. (2.26) for n 5 s, s 1 1. Furthermore, in solving (2.29)–(2.31) for
hv(ji , ts11) 5 vs11

i jN21
i51 the approximation hvs

ijN
i50 is known.

Approximations to derivatives with respect to j in (2.29)The values hxijm
i50 are obtained by linear interpolation on

are represented at node ji as summations of the formthe solution hxjjn
j50 computed on the evenly spaced grid

(2.8) at time t. Details concerning the construction of (2.25)
are given in Mulholland et al. [15]. Here we need only (gj)i 5 ON

j50
D(1)

ij gj , (gjj)i 5 ON
j50

D(2)
ij gj , (2.33)

present sufficient information to define parameters that
have to be specified in the numerical computations. To
this end, we note that the smooth coordinate map (2.25) where D(1) and D(2) are, respectively, the first-order and
is represented by second-order PS differentiation matrices (see [4, 7]), and

g denotes xs, xs11, vs, or vs11. A discretisation of (2.29) by
Crank–Nicolson isx 5 Pm(j, t) 5 Om

k50
skak(t)Tk(j), (2.27)

vs11
i 2 vs

i

Dt
2

xs11
i 2 xs

i

Dt
1
2 FSvj

xj
Ds11

i
1 Svj

xj
Ds

i
Gwhere ak is a time-dependent coefficient, Tk is the Cheby-

shev polynomial of the first kind of degree k, and sk is a
filter function given by 1

1
4 H(vs11

i 1 vs
i)FSvj

xj
Ds11

i
1 Svj

xj
Ds

i
GJ (2.34)

sk 5 exp[232(k/m)c]. (2.28)
5

«

2 FSvjj

x2
j
Ds11

i
1 Svjj

x2
j
Ds

i
2 Sxjj vj

x3
j
Ds11

i
2 Sxjj vj

x3
j
Ds

i
G,

The smoothing parameter c has to be specified.
Assuming the existence of the time-dependent map

for i 5 1, 2, ..., N 2 1 and s 5 0, 1, ....(2.25) relating x to a coordinate j [ Dc 5 [21, 1] we may
hv0

i jN
i50 is given by (2.30), and vs11

0 and vs11
N are given byrecast the differential problem (2.1)–(2.3) as a problem

(2.31). The nonlinear system (2.34) is solved by a Newtonwith dependent variable v(j, t) 5 u(x(j, t), t) and indepen-
iteration with initial estimate at step s 1 1 provided bydent variables j and t. The transformed system is
the solution at step s. BDF time discretisation is performed
in an analogous manner.

The key steps in evolving the solution from time ts to timev̇ 2
ẋ
xj

v
j

1
v
xj

v
j

5
«

(xj)3 Fxj

2v
j2 2 xjj

v
j
G,

(2.29) ts11 by the discrete time algorithm are summarised below.
j [ [21, 1], t . 0, DISCRETE TIME ALGORITHM. Select initial and maxi-

mum time steps, Dt and Dtmax ; discretisation integers n and
where v̇ ; v/t and ẋ ; x/t denote derivatives in which N, and integers p and m for smoothing (2.22) and for the
j is held constant, and xj ; x/j. The initial and boundary map (2.27); real parameters a for (2.17), c for (2.28), and
conditions for (2.29) are tolerances FDTOL, PSTOL for the Newton iterations as-

sociated, respectively, with the finite difference system
v(j, 0) 5 u0(x(j, 0)), 21 # j # 1, (2.30) (2.13), (2.24) and with the PS system (2.34).

v(21, t) 5 bL(t), v(1, t) 5 bR(t), t $ 0. (2.31) (1) Form initial conditions hx0
i , u0

i jn
i50 for the coarse

grid solution via (2.24). Form the map (2.25) at t 5 t0 5
The problem (2.29)–(2.31) is solved for v using standard 0, hence hx0

i jN
i50 , and initial conditions hx0

i , v0
i jN

i50 via (2.30).
PS discretisation in space based on nodes s :5 0.

(2) Obtain hxs11
i , us11

i jn
i50 from DAE (2.13) and (2.24).

ji 5 2cos
fi
N

, i 5 0, 1, ..., N, (2.32) (3) Form the map x 5 x(j, ts11) and hence
hxs11

i jN
i50 .

(4) Obtain the PS solution hvs11
i jN

i50 by Crank–and a stiffly stable integrator in time such as Crank–
Nicolson or BDF. In this algorithm, the PS method pro- Nicolson or BDF solution of (2.34).
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TABLE IITABLE I

Ly Errors for MMPDE and DAE Solutions of Problem II Ly Errors for PS Solutions of Problem II

N Dt Ly error Normalised CPUt Ly error Normalised CPU

1.0 1.89 3 1021 1.07 64 0.05 4.61 3 1023 1.00
96 0.05 4.07 3 1023 1.921025 1.75 3 1022 1.00

10210 1.54 3 1022 2.88 64 0.01 3.76 3 1024 2.58
DAE (t 5 0) 1.47 3 1022 0.86

Note. « 5 1023, using n 5 30, a 5 2, p 5 3 in (2.13) and (2.24),
and m 5 64, c 5 2 in (2.34). Integration of (2.34) over 0 , t # 0.5Note. « 5 1023, using n 5 30, a 5 2, p 5 3, and 0 , t # 0.5. First-

order BDF employed with initial Dt 5 Dtmax 5 0.05. by Crank–Nicolson.

Table II shows results for Problem II with PS post-(5) s :5 s 1 1. Go to 2.
processing combined with Crank–Nicolson time integra-
tion. Here we used a fixed value of Dt to integrate overThe moving mesh solution of (2.13) and (2.24) uses a
the time interval 0 , t # 0.5, and the aim was to gain somevery simple time-step control. In terms of the maximum
insight into the key source of the computational error.norm, if consecutive iterates fail to agree to within FDTOL
Results for N 5 64 and N 5 96 with a fixed Dt show noafter three Newton cycles the time-step is halved and the
change in Ly error, and this suggests that at N 5 64 thecalculation repeated. Rapid Newton convergence at any
error is dominated by time-step error. To support this viewstep leads to an increase in Dt prior to the next step,
we have presented the Ly error for N 5 64 and a reducedprovided the revised Dt does not exceed Dtmax . PSTOL is
Dt: the reduction in computational error indicates thatused in an analogous manner: if a PS iteration has failed
much might be gained by employing a more accurate timeto converge after three Newton cycles the time-step is
integrator. CPU times are normalised relative to the timehalved and the FD calculation is repeated. All computa-
for N 5 64 and Dt 5 0.05.tions performed using the discrete time algorithm em-

In Table III we have displayed the Ly errors obtainedployed the values FDTOL 5 1025 and PSTOL 5 1028.
by PS post-processing carried out using BDF methods of2.3. Numerical Results for the Discrete Time Algorithm
orders up to 5. Here we see that high accuracy can beInitial numerical experiments compared the MMPDE
achieved with methods of order 4 or 5: furthermore, themethod of Huang, Ren, and Russell [8] with the DAE
CPU time is virtually independent of the order of the BDFmethod in terms of accuracy and computational efficiency.
method employed. This set of experiments led us to adoptResults are presented for the integration of Problem II
a suite of BDF methods with orders 1 to 5 for all subsequentover the time interval 0 , t # 0.5 using (2.13) and (2.20)
integrations of Eq. (2.34) using the discrete time algorithm.with several values of t, and also using the DAE (2.13)
This is linked, of course, with the time-step control outlinedand (2.24). In the computations we solved the moving mesh
in subsection 2.2.finite difference equations for the parameter set h« 5 1023,

In Table IV we have compared our moving mesh finiten 5 30, a 5 2, p 5 3j, with initial Dt and Dtmax set
difference solution to Problem I with results obtained byat 0.05.
Blom et al. [3] using their first-order implicit-Euler Lagran-Table I shows the maximum pointwise error throughout
gian (IEL) scheme. As in [3], a fixed value of Dt was usedthe specified time interval for several values of t and the
throughout the integration. Note that the DAE results areCPU time normalised by the value at t 5 1025. For the

MMPDE we found high accuracy and relatively low com-
putational cost for t 5 O(102q), with 3 # q # 7. In this

TABLE III
region the Ly error is fairly insensitive to the value of t.

Ly Errors for PS Solutions of Problem IIFor t values of order unity the mesh movement is slow
relative to the movement of solution features, and this can

K Ly error
give rise to inaccuracies. For values of t smaller than 1027

the problem becomes very stiff and the CPU time increases 2 2.91 3 1024

3 2.41 3 1024substantially. The DAE approach was found to be as accu-
4 8.00 3 1025rate as the MMPDE method and the cost was marginally
5 3.56 3 1025

less. Furthermore, this method does not require a choice
to be made for t and it is very robust. The comparative Note. « 5 1023, using n 5 30, a 5 2, p 5 3 in (2.13) and (2.24), and
numerical experiments led us to use the DAE approach m 5 64, c 5 2, and N 5 64 in (2.34). Integration of (2.34) by Kth-order

BDF over time interval 0 , t # 0.5 with initial Dt 5 0.001 and Dtmax 5 0.01.for all subsequent calculations.
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TABLE IV

Ly Errors for Problem I

t 5 1.0 t 5 1.5

n 5 20 n5 40 n 5 80 n 5 20 n 5 40 n 5 80
Method in [3] 1.60 3 1021 9.99 3 1022 3.53 3 1022 9.85 3 1022 1.63 3 1021 1.50 3 1021

DAE 1.15 3 1022 3.23 3 1023 9.26 3 1024 2.65 3 1022 2.54 3 1022 2.37 3 1022

Note. « 5 1023, using a 5 2, p 5 3 in (2.13) and (2.24). First-order BDF employed with fixed Dt 5 1/40.

better by an order of magnitude at t 5 1.0 and marginally t and j in Fig. 1(c) and the map x 5 x(j, t) is given in Fig.
1(d). The smooth evolution of the coarse grid nodesbetter at t 5 1.5. The computed solution to this problem

is less accurate around t 5 1.5 where the moving front is hxi(t)jn
i50 is shown in Fig. 1(e) and in Fig. 1(f) we show the

computed PS solution at t 5 1.5. This display shows clearlyclose to the boundary at x 5 1: we shall return to this
that the error becomes very large toward the end of thedifficulty later in subsection 4.2.
time interval [0, 1.5] as the front reaches the boundary atTable V presents a comparison between the PS solution
x 5 1. In this period of time there is rapid mesh movementof Problem I and the solution obtained in [3] using a grid
and the time-step control does not reduce Dt sufficientlywith n 5 80 and a fixed time-step Dt 5 1/80. Our coarse
fast. This problem is overcome in Subsection 4.2 using agrid solution was obtained using the same fixed time-step
more sophisticated time-step control.with n 5 30, and the PS solution used N 5 64. The table

Our moving mesh finite difference solution to Problemshows that our PS method gives an improvement of 3
II is compared in Table VI with the IEL results for thisorders of magnitude at t 5 1.0, but only an improvement
problem given in [3]. Input data are similar to those givenof between 1 and 2 orders of magnitude at the more difficult
in Table IV with results presented at t 5 0.25 and t 5 1.0.time of t 5 1.5. In the interval 0 , t # 1.0 the maximum
For this problem the DAE results are better by an orderLy error for the PS method is 1.63 3 1025 at t 5 0.2875.
of magnitude at both values of time. A comparison be-The CPU times are not presented in [3]; however, it is of
tween IEL results and our PS solution is given in Tableinterest to note that for integration up to t 5 1.0, the CPU
VII. As in Table V, in Table VII the IEL results weretime for our moving mesh FD method with n 5 80 exceeds
obtained with n 5 80 and a fixed time-step Dt 5 1/80. Ourthe CPU time for the PS method (with data as in Table
coarse grid solution used the same time-step, with n 5 30,V) by a factor of 4.
and the PS solution used N 5 64. In this case, the PSFigure 1 displays the computed solution to Problem I
method gives an improvement of 3 orders of magnitudeusing the discrete time algorithm with initial Dt 5 0.001,
at both output times. In the interval 0 , t # 1.0 the maxi-Dtmax 5 1/80, and all other input parameters as presented
mum Ly error for the PS method is 4.38 3 1025 at t 5 0.65.in Table V. Throughout the paper, the orientation of the

Figure 2 displays the computed solution to Problem IIaxes is selected to give the best view. In Fig. 1(a) we
using the discrete time algorithm with initial Dt 5 0.001,see the solution plotted as a function of time, t, and the
Dtmax 5 1/80, and all other input parameters as presentedcomputational coordinate, j, in the interval 0 , t # 1.0. The
in Table VII. Figures 2(a) and 2(b) show that small timedisplay clearly illustrates the smoothness of the solution
steps are used by the adaptive algorithm in the initial phasein the transformed coordinate system. The steep front is
and also around t 5 0.5, when the two fronts are merging.evident in Fig. 1(b) where the solution is shown in terms
Note also in Fig. 2(c) that despite the time-step reductionof x and t. The computational error is shown in terms of
near t 5 0.5 the computational error is greatest in this
region. The smoothness of the particle paths is evident in
Fig. 2(e), and the merging of the fronts is clearly shownTABLE V
in this display.

Ly Errors for Problem I
Problem III is included to enable us to identify a source

of difficulty for the adaptive algorithm. As the front enterst 5 1.0 t 5 1.5
the domain at x 5 0 and leaves at x 5 2f we noticed that

Method in [3] 4.06 3 1022 8.04 3 1022 errors can be large immediately before the action ceases
adaptive PS 1.19 3 1025 2.57 3 1023

at x 5 2f. With « 5 1023 there is a strong front at x 5 0
and a weak front at x 5 2f at time t 5 0.002, and theNote. « 5 1023, using n 5 30, a 5 2, p 5 3 in (2.13) and (2.24), and
algorithm yields low-accuracy results at this time. To gainm 5 64, c 5 2 and N 5 64 in (2.34). Integration of (2.34) by fifth-order

BDF. First-order BDF employed with n 5 80 and Dt 5 1/80 in [3]. some insight into the source of the problem we have used



NUMERICAL SOLUTION BY ADAPTIVITY AND EQUIDISTRIBUTION 287

FIG. 1. Computed solution for Problem I over the interval 0 , t # 1.0 with input data as in Table V. Parts (a) and (b) show v(j, t) and
u(x, t). Computational error is in (c), map x 5 x(j, t) is in (d), and coarse grid nodal paths are in (e). The large computational error as t approaches
1.5 is shown in (f).

equidistribution to fit nodes to the exact solution at t 5 front near x 5 0 appears to present no problems. The
failure is related to the cut-off imposed on the smoothing0.002. Figure 3(a) shows the locations of the ‘‘equidistrib-

uted’’ nodes for n 5 30, a 5 2, and p 5 3. The unbroken process at the boundaries. By this we mean that the summa-
tions in (2.22) only include values of k in the range 0,line is simply a piecewise linear connection of adjacent

nodes. The equidistribution fails completely to place nodes 1, ..., n 2 1: if k falls outside this range the correspond-
ing terms in numerator and denominator are omitted.in the region of weak action near x 5 2f, whereas the
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TABLE VI

Ly Errors for Problem II

t 5 0.25 t 5 1.0

n 5 20 n 5 40 n 5 80 n 5 20 n 5 40 n 5 80
Method in [3] 8.99 3 1022 1.18 3 1021 5.76 3 1022 1.21 3 1021 6.01 3 1021 1.48 3 1021

DAE 6.26 3 1022 5.91 3 1023 1.30 3 1022 3.99 3 1022 7.39 3 1022 3.07 3 1022

Note. « 5 1023, using a 5 2, p 5 3 in (2.13) and (2.24). First-order BDF employed with fixed Dt 5 0.05.

This one-sided smoothing is adopted in [11, 15]: in gen- smoothed mesh possesses the essential property of no
node-crossing, and we demonstrate that it is likely to haveeral, it presents no difficulties, but the solution of Problem

III at t 5 0.002 illustrates a weakness in the technique. a good measure of smoothness by virtue of its local quasi-
uniformity property [10].To show that proper smoothing near x 5 2f will increase

the accuracy we used the periodicity of the solution to give Define unsmoothed and smoothed monitor function vec-
tors byvalues of Mk11/2 in (2.22) for k , 0 and k . n 2 1. This

provided us with symmetric smoothing in each interior
interval. The locations of the equidistributed nodes given
by this modified smoothing technique are shown in Fig.

M 5 (M011/2 , M111/2 , ..., Mn2111/2)T

M̃ 5 (M̃011/2 , M̃111/2 , ..., M̃n2111/2)T
J (3.1)

3(b). In this case there are nodes in the region of action
near the right boundary. Figures 3(c) and 3(d) show the
evolution of the coarse grid nodes during the time interval and a smoothing matrix, D21G, by
0 , t # 0.002 obtained by fitting nodes to the exact solution
by equidistribution at a sample of points in the time inter-

DM̃ 5 GM, (3.2)val. In Fig. 3(c) we see nodes moving away from x 5 2f,
whereas Fig. 3(d) indicates that the symmetric smoothing

where D [ Rn3n is a diagonal matrix, and, for i, j 5 0, 1,holds nodes close to the boundary until the front has moved
..., n 2 1,completely into the region x . 2f. The improvement

brought about by symmetric smoothing at the boundaries
identifies a possible source of difficulty: unfortunately, for
non-periodic problems it does not provide us with a solu- [G]i, j 5 gi, j 5Hn ui2j u if ui 2 j u # p,

0 otherwise.tion. Further work is needed in improving the smoothing
process at the boundary for general problems.

Here n 5 q/(q 1 1), with q defined in (2.22), and D has
3. INVESTIGATION OF COARSE GRID SMOOTHNESS diagonal elements D011/2 , D111/2 , ..., Dn2111/2 , with

The aim of this section is to examine the quality of the
mesh generated by the finite difference solution of the Di11/2 5 On21

j50
gi, j . (3.3)

DAE (2.13) and (2.24). It is important to generate a mesh
that is free from abrupt variations, and this is the purpose
of the smoothing process described by (2.22). The spatially It is clear from the definitions of G and D that iD21Giy 5

1, and it follows from (3.2) that

TABLE VII iM̃iy # iMiy . (3.4)
Ly Errors for Problem II

A quasi-uniformity result is readily obtained for the spe-
t 5 0.25 t 5 1.0 cial case of smoothing with p 5 n 2 1. For this choice of

p the matrix G is full, and the smoothing process (2.22)Method in [3] 8.30 3 1023 4.00 3 1023

makes use of the monitor function values in all grid spaces.adaptive PS 9.02 3 1026 9.08 3 1026

For i 5 0, 1, ..., n 2 1 we have
Note. «, n, a and p as in Table VI, and m 5 64, c 5 2, and N 5 64 in (2.34).

Integration of (2.34) by fifth-order BDF. First-order BDF employed with
n 5 80 and Dt 5 1/80 in [3]. Di11/2M̃i11/2 5 n iM1/2 1 n i21M3/2 1 ... 1 nMi21/2 1 Mi11/2
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FIG. 2. Computed solution for Problem II over the interval 0 , t # 1.0 with input data as in Table VII. Parts (a) and (b) show v(j, t) and
u(x, t). Computational error is in (c), map x 5 x(j, t) is in (d), and coarse grid nodal paths are in (e).

Hence Di11/2M̃i11/2 . n[n i21M1/2 1 ... 1 nMi23/2 11 nMi13/2 1 ... 1 nn2i21Mn21/2
Mi21/2 1 nMi11/2 1 ... 1 nn2iMn21/2], since 1 . n 2. This
inequality may be written as

and

Di11/2M̃i11/2 . nDi21/2M̃i21/2 .
Di21/2M̃i21/2 5 n i21M1/2 1 n i22M3/2 1 ... 1 Mi21/2 1 nMi11/2

1 n2Mi13/2 1 ... 1 nn2iMn21/2 . Similarly, it may be shown that
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FIG. 3. Equidistributed nodes using the exact solution of Problem III at t 5 0.002. Parameters are « 5 1023, n 5 30, a 5 2, and p 5 3. Parts
(a) and (b) show, respectively, monitor function cut-off at the boundaries and periodicity used to remove cut-off. Parts (c) and (d) display the
evolution of coarse grid nodes given by the cut-off and periodic monitor functions.

Di21/2M̃i21/2 . nDi11/2M̃i11/2 , Di11/2

Di21/2
n ,

xi11 2 xi

xi 2 xi21
,

Di11/2

Di21/2

1
n

.

and these conditions, together with the equidistribution
By summing the series (3.3) we obtain the quasi-unifor-

equation (2.24), indicate that mity condition

n [1 2 nn2i 1 n 2 n i11]
[1 2 nn2i11 1 n 2 n i]

,
xi11 2 xi

xi 2 xi21 (3.5)
Di11/2

Di21/2
n ,

M̃i21/2

M̃i11/2

,
Di11/2

Di21/2

1
n

,
[1 2 nn2i 1 n 2 n i11]

n [1 2 nn2i11 1 n 2 n i]
,

and
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FIG. 4. Grid ratio and bounds in (3.5) for Problem I at t 5 1.0 and data set h« 5 1023, n 5 30, a 5 2, p 5 15j.

for i 5 1, 2, ..., n 2 1. Since equidistribution is imposed at To see the effectiveness of (3.6) we might consider a
singular perturbation problem defined on [0, 1], with aeach time-step, we see that (3.5) will hold throughout the

time evolution, provided p 5 n 2 1. In practice, of course, solution having a boundary layer of thickness O(«) near
x 5 1. If we set n to the realistic value 2/3 and assumep will be much smaller than n 2 1, and (3.5) can be taken

as an approximation to the real situation. that xi11 2 xi diminishes as i increases, then the greatest
rate of diminution with i is given by the limiting caseTo check the bounds in (3.5), Problem I was integrated

to t 5 1.0 using the parameter set h« 5 1023, n 5 30, a 5
2j and a range of values for p. Figure 4 shows z(i) 5 (xi11 2
xi)/(xi 2 xi21) for i 5 1, 2, ..., 29, together with the upper xi11 2 xi 5 Sd(xi 2 xi21), i 5 1, 2, ..., n 2 1.
and lower bounds given by (3.5), with p set equal to 15.
For lower values of p we find that z(i) is not contained
within the bounds. Using this model it is readily shown that for « 5 1023

the node xn21 is within the boundary layer provided n isA result related to (3.5) has been given by Dorfi and
Drury [6]. Their result, sufficiently large to ensure that

n ,
xi11 2 xi

xi 2 xi21
,

1
n

, (3.6)
TABLE VIII

Minimum and Maximum Values of z(i) for Problem I
at t 5 1.0

is obtained as above by moving the boundaries to 6y and
by smoothing over the doubly infinite set of intervals. Table p min1#i#n21z(i) max1#i#n21z(i)
VIII shows minimum and maximum values of z(i) for 1 #

3 0.33 3.02i # n 2 1 at t 5 1.0 in the solution of Problem I. Values
6 0.49 2.13of «, a, and n are those used for Fig. 4 and the table gives
9 0.61 1.61

results for a range of values of p. Note that when p has 15 0.67 1.48
been increased to 15 the minimum and maximum values

Note. Data as for Fig. 4.have become contained in the interval (2/3, 3/2) ; (n, 1/n).



292 MULHOLLAND, QIU, AND SLOAN

FIG. 5. Coarse grid for Problem II at t 5 0.5 for the data set h« 5 1023, n 5 30, a 5 2, p 5 3j. First-order BDF used with initial Dt 5 Dtmax 5 0.05.

tion that the monitor function is evaluated in terms ofS3
2Dn

. 501. the exact differential solution. This being the case, some
features of the monitor function may be obtained from
known behaviour of the exact differential solution.

Since this is satisfied for n greater than 15, we may assume
The monitor function, Mi11/2 , used in (2.24) may be

that a grid with 30 intervals and satisfying (3.6) is capable
replaced by

of resolving a boundary layer of thickness 1023. However,
the grids displayed in Section 2 corresponding to adaptive
solutions of problems with this degree of singularity appear Mi11/2 :5 M(xi11/2 , t) 5 !1 1 a2 Su

x
(xi11/2 , t)D2

,

(3.7)
to have values of (xi11 2 xi)/(xi 2 xi21) greatly in excess
of 1/n. The values of the ratio that are attained in computa- for i 5 0, 1, ..., n 2 1.
tions are likely to be influenced by the solution being com-
puted as well as by the type of smoothing adopted. It is readily seen that

Alternative bounds on (xi11 2 xi)/(xi 2 xi21) may be
obtained by taking the features of the exact solution into
account when approximating M̃i61/2 in (2.24). Problem II 1 # Mi11/2 # 1 1 a Uu

x
(xi11/2 , t)U.

was solved for 0 , t # 1.0 using the moving mesh finite
difference method, and it was found that for any value of

Hencet in this interval the node locations were almost coincident
with those found by applying equidistribution to the exact

1 # iMiy # 1 1 aR, (3.8)solution. Fitting nodes to the exact solution was based
on the same parameter values. Figure 5 shows the exact

where R 5 sup0#x#1 uu/xu. For the problems consideredsolution at t 5 0.5, with the nodes computed by the discrete
in Section 2 the quantity R is typically O(1/«) as « R 0.time algorithm and those fitted to the exact solution super-
From (3.8) and (3.4) we haveimposed. For 0 , t # 1.0 the discrepancies between corre-

sponding nodes computed by the two methods are greatest
1 # iM̃iy # 1 1 aR, (3.9)at t 5 0.5 when the fronts merge. Computations of this

type suggest that investigations into the evolution of nodes
in the discrete time algorithm may be based on the assump- which yields
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The validity of the bounds in (3.16) is illustrated in Fig.1
K

#
M̃i21/2

M̃i11/2

# K, (3.10) 6. For Problem I we have displayed the bounds 1/nK and
aS/n, and the maximum and minimum values of h(i) 5
xi11 2 xi over the time interval 0 # t # 1.0, with parameter

where K 5 1 1 aR. If (3.10) is combined with (2.24), a values h« 5 1023, n 5 30, a 5 2, p 5 3j. In computing the
revised quasi-uniformity result is obtained as quantity R that is defined at (3.8) we used the exact solu-

tion. Note that the upper bound is sharp while the lower
bound is low relative to the computed minimum.1

K
#

xi11 2 xi

xi 2 xi21
# K. (3.11)

4. CONTINUOUS TIME ALGORITHM

Finally, assumptions like those leading to (3.7) may be
4.1. Formulation of Algorithm

used to obtain a lower bound on xi11 2 xi , for i 5 0, 1, ...,
n 2 1. From (2.15) and (2.16) it is readily seen that The key distinction between this algorithm and the dis-

crete time algorithm lies in the construction and subse-
quent use of the smooth map (2.25). The moving meshEx(hi11,t)

x(hi,t)
M(s, t) ds 5

u(t)
n

, (3.12) finite difference components of the two algorithms are
essentially similar. Thus, we generate the coarse mesh solu-
tion hxs

i , us
ijn

i50 for s 5 0, 1, ... as before, by solving the DAE
where comprised of (2.13) and (2.24). Two aspects of the imple-

mentation details for the DAE solution differ marginally
from those described in Section 2. Firstly, Eq. (2.13) isu(t) 5 E1

0
M(s, t) ds, (3.13)

solved using a second-order BDF method, with the first-
order backward Euler method applied only at the first

and M is given by (2.17). A trapezoidal approximation for step. Secondly, the simple time-step control is modified to
the left-hand-side of (3.12) gives incorporate a limit on mesh movement per time-step: this

control makes use of an additional tolerance, VELTOL.
The time-step controls that are used for the moving mesh

Mi11/2(xi11 2 xi) 5
u(t)

n
. (3.14) equations are listed below.

Time-Step Controls. Specify a maximum time step,
If a $ 1 we note that Dtmax . Any increase in Dt dictated by the controls must

not violate Dt # Dtmax , where Dtmax has the same value
for both FD and PS solutions.

u(t) # a E1

0 !1 1 Su
x

(x, t)D2

dx 5 aũ(t), (3.15)
Coarse Grid Solution. (i) The Newton iteration for

hxs11
i , us11

i jn
i50 is deemed not to have converged if the dis-

crete L2-norm of the updates exceeds FDTOL after 10where ũ(t) is the total arc-length between x 5 0 and x 5
cycles, or if it increases in any cycle. The current Dt is1 at time t. We may assume that ũ(t) is bounded for 0 #
updated by means oft # T, where T is any finite value of time, and write

S 5 sup
0#t#T

ũ(t). Dt :5 Dt !3.5
I

, (4.1)

Making use of (3.8) we have where I denotes the number of Newton iterations required
for convergence at level FDTOL. In a case of failure to
converge, I is set to the value 12 and the step is repeated1 # Mi11/2 # 1 1 aR 5 K,
with the revised Dt.

(ii) At each time-step the conditionand this, together with u(t) $ 1, enables us to write

max
i

uẋ(hi , ts11) 2 ẋ(hi , ts)u # VELTOL (4.2)1
nK

# xi11 2 xi #
aS
n

, (3.16)

is also imposed. If this condition fails then Dt is halved
and the step is repeated.provided a $ 1.
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FIG. 6. Maximum and minimum grid spacing and bounds in (3.16) for Problem I over 0 # t # 1.0 and data set h« 5 1023, n 5 30, a 5 2, p 5 3j.

An analogous procedure is adopted for the PS solution, yield the coefficients ai, j . The map (4.4) is smoothed using
a boundary-preserving filter as described in [15], and thewith FDTOL replaced by PSTOL in (i) above. The control

(i) is closely related to that used for the computations filter employed here has the form
described in Section 2, and (ii) imposes an additional con-
straint.

si, j 5 exp F232SS i
mDc1

1 S j
mDc2DG. (4.6)As stated earlier, the formation of the time-dependent

coordinate map (2.25) is the defining feature of the continu-
ous time algorithm. The construction of the map is similar

The two parameters c1 and c2 permit different filterto that presented in Mulholland et al. [15] for two-dimen-
strengths in space and time. As shown in [15], the smoothsional steady problems. The moving mesh equations are
map x 5 x(j, t) is given in terms of (4.4) byintegrated over r steps to time tr , producing hxs

i , us
ijn

i50 for
s 5 0, 1, ..., r, with r chosen such that tr is the final time

x 5 x(j, t) :5 P(j, t) 5 (1 2 j 2)Q(j, t) 1 j, (4.7)at which the solution is required. We then use bilinear
interpolation to obtain values x l

k for k 5 0, 1, ..., m and
wherel 5 0, 1, ..., m, where these values approximate x at the

Chebyshev nodes

Q(j, t) 5 Om22

i50
Om
j50

si, jbi, j Ti(j)Tj S2t 2 tr

tr
D

jk 5 2cos
fk
m

, tl 5
tr

2 S1 2 cos
fl
mD. (4.3)

and coefficients bi, j are defined recursively in terms ofThe transformation for x in (2.25) is approximated by
hak,ljm

k,l50 .
Given the map (4.7), it is now possible to integrate the

P(j, t) 5 Om
i50

Om
j50

ai, jTi(j)Tj S2t 2 tr

tr
D (4.4) transformed equation (2.29) over the time interval 0 # t #

tr using standard PS discretisation in space based on the
nodes (2.32). Time integration is effected by BDF of orderand the interpolatory conditions
s at time-step s (s # 5) and BDF of order 5 thereafter.
Since the map (4.7) is given as a continuous function of t
it is not necessary to match the time-steps to those em-

P(jk , tl) 5 x l
k

for k, l 5 0, 1, ..., m
J (4.5)

ployed for the moving mesh equations. Indeed, it is hoped
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TABLE IXthat the smoothness of the map will enable us to use time-
steps that are considerably larger than those used to gener- Minimum and Optimal Mapping Filter Parameter Values for
ate the coarse mesh. the Three Test Problems and for Various Values of m

The key steps in evolving the solution up to time tr by
Problem m c1(min) c1(opt) c2(min) c2(opt)the continuous time algorithm are summarised below.

64 2.4 3.0 1.8 2.0CONTINUOUS TIME ALGORITHM. Select initial and max-
I 128 2.0 2.2 1.8 1.8imum time-steps, Dt and Dtmax ; discretisation integers n

156 2.0 2.1 1.8 1.8and N, and integers p and m for smoothing (2.22) and for 64 3.0 3.0 1.5 2.1
the map (4.7); real parameters a for (2.17), c1 and c2 for II 128 2.0 2.0 1.5 1.8
(4.6), and tolerances FDTOL, PSTOL, and VELTOL for 156 1.9 1.9 1.5 1.9

64 — — — —Newton iterations and for (4.2).
III 128 2.2 3.0 1.8 1.9

156 2.0 2.4 1.8 1.8(1) Obtain hxs
i , us

ijn
i50 for s 5 0, 1, ..., r, by solving

DAE (2.13) and (2.24) by second-order BDF (first-order
at Step 1) with time-step controls as outlined earlier in
this section.

off, though optimal values tend to be close to the minimum
(2) Re-set initial Dt and Dtmax for PS solution. Form value. Additionally, Fig. 7 shows how sensitive the solution

the map (4.7) using coarse grid data. Solve (2.29) for of Problem I is to variations in the two filter parameters.
hvs

ijN
i50 and s 5 0, 1, ... in region 0 , ts # tr , by BDF of In Fig. 7(a), we set m 5 156 and c2 5 2.0, and vary c1 ;

order up to 5, with time-step controls as used in Step 1. from this we see that there is a fairly sharp optimal value
close to the minimum cut-off value and that the solution

4.2. Numerical Results for the Continuous deteriorates as c1 is increased beyond the optimal value.
Time Algorithm Similarly, Fig. 7(b) shows, on setting m 5 156 and c1 5

2.0, how the solution varies with c2 ; here we note that,Given a (relatively coarse) finite difference solution of a
although there is an optimal value for c2 it is nowhere nearproblem, there remain two distinct stages to the continuous
as sharp as that for c1 and also that the solution does nottime algorithm. The first stage is to construct the map (4.7)
continue to deteriorate as c2 moves away from this optimalusing, as input, the discrete set of adaptive grids produced
value. Similar patterns emerge from solutions to Problemsby the adaptive FD method. This involves setting three
II and III.parameter values:

The results summarised in Table IX and highlighted in
m: the maximum degree of polynomial (in one vari- Fig. 7 indicate that the best overall strategy is to choose

able) in the transformation (4.4); m large (e.g., m 5 156) and choose c1 P 2.0 and c2 P
2.0—this provides close to optimal performance in all threec1 : the first (spatial) filter parameter in (4.6);
test problems.c2 : the second (temporal) filter parameter in (4.6).

Once a suitable mapping has been constructed, the next
(final) stage is the PS approximation of the transformedTo determine the usefulness of this process of con-

structing the map (4.7), we must discover how sensitive problem (2.29) where values for x, xj , and xjj are computed
from the map (4.7). This involves choosing values for thesolutions are to variations in parameter values and whether

optimal settings are problem dependent. To assist in this parameters N (from (2.32)), Dtmax , and VELTOL (from
(4.2)). From numerous numerical experiments it was founddetermination, we perform numerous calculations over

ranges of parameter values for the three test problems (for that a value of 0.5 for the parameter VELTOL was ade-
quate for the three test problems; this parameter only as-Problem III we used the spatial domain x [ [21, 5] and

set « 5 0.01). Table IX summarises the results on parameter sumes importance when the mesh changes direction sud-
denly. If an extremely large value is chosen for VELTOLvalue validity. For each of the three problems, m is set, in

turn, to 64, 128, and 156; for each of these is listed the then no time-step control is effected by (4.2), whereas a
very small value for VELTOL will result in inappropriatelyminimum and optimal values for the filter parameters c1

and c2 . The minimum value represents the smallest param- small time-steps being taken within a region of rapid
mesh movement.eter setting for which convergent solutions were obtained,

while the optimal value is that for which the maximum It is the values chosen for Dtmax and N that provide the
most interest since it is these that generally control theabsolute error in the PS approximation was minimised. It

should be noted that c2 has no maximum cut-off value temporal and spatial errors, respectively. Efficiency dic-
tates that there should be a balance between the two contri-(with results being relatively insensitive to the value chosen

for this parameter), while c1 does have a maximum cut- butions to overall error; however, to better understand
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TABLE X

Maximum Absolute Errors in the PS Approximation of
Problem I with t 5 1.5 and « 5 1023

N Maximum absolute error

32 4.40 3 1024

48 1.59 3 1025

64 9.46 3 1027

80 1.48 3 1027

96 3.66 3 1028

112 6.10 3 1029

128 1.10 3 1029

8, which plots the time-step history of the FD solution,
shows that the time-step control based on the number of
Newton iterations keeps the time-step at a level below the
maximum for most of the evolution, but that control (4.2)
considerably reduces the time-step as t 5 1.5 is approached.

Similarly Table XI shows the maximum absolute errors
associated with the PS approximation of Problems II and
III with « set at 0.001 and 0.01, respectively. For both
problems temporal errors were effectively eliminated by
setting Dtmax 5 0.001 and VELTOL 5 0.5. The results for
Problem II again demonstrate spectral convergence while
those for Problem III show rapid (order . 7) convergence.

By effectively eliminating spatial error from our calcula-
tions we can show how the temporal error diminishes on
reducing Dtmax . Table XII shows the overall error associ-
ated with the PS approximation of Problem II with « 5
0.001 and with the fixed settings N 5 128 and VELTOL 5
0.5. The results here seem to indicate a 4th order rate of
convergence to the solution despite the fact that a 5thFIG. 7. Problem I solution sensitivity to variations in the filter parame-

ters as measured by changes in maximum absolute errors. (a) m 5 156, order time-integrator was used.
c2 5 2.0 and varying c1 . (b) m 5 156, c1 5 2.0 and varying c2 . Overall the results for the continuous time algorithm

are promising. The difference in results between the dis-
crete and continuous time algorithms is due to the different

how this balance might be achieved we must investigate treatments of the ẋ term in (2.29): the discrete algorithm
separately the roles played by the two parameters by effec- approximates this term using 5th order backward differ-
tively eliminating (alternately) temporal and spatial contri-
butions. Firstly, we demonstrate convergence (to zero) of
the spatial error for the three test problems.

TABLE XITable X shows the overall maximum absolute error in
Maximum Absolute Errors in the PS Approximation ofthe PS approximation of Problem I with t 5 1.5 and « 5

Problems II (with « 5 1023) and III (with « 5 1022)0.001. The approximation employed a map calculated using
the non-optimal parameter values m 5 64, c1 5 3.0, and

Problem II Problem III
c2 5 2.0. The parameter values used to effectively eliminate N maximum absolute error maximum absolute error
temporal errors were VELTOL 5 0.1 and Dtmax 5 0.0001.

48 1.8 3 1024 5.0 3 1022The results clearly demonstrate spectral convergence of
64 1.0 3 1026 3.7 3 1024the PS approximation to the exact solution. The rapid mesh
96 2.3 3 1027 2.2 3 1025

movement, evident at times close to t 5 1.5, does not lead
128 8.2 3 1029 2.4 3 1026

to a deterioration in accuracy of approximation—this is
due to reductions in time-steps induced by the control (4.2) Note. The settings Dtmax 5 0.001 and VELTOL 5 0.5 were fixed

throughout.during both the FD and PS solutions of the problem. Figure
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FIG. 8. Time-step history for the adaptive FD solution of Problem I with « 5 1023, n 5 32, a 5 8, p 5 4, Dtmax 5 0.01, and VELTOL 5 0.5.

ences while the continuous algorithm derives an accurate the cost becomes prohibitive at levels of accuracy well
below those shown in Table X. In this type of situationvalue from a map computed a priori. Although u̇ terms

are also computed using 5th order backward differences, the retention of a non-zero value of t might be considered
in (2.19) for the discrete time case, but the proper choiceit is the error associated with the approximation of ẋ that

can dominate due to the amplification factor 1/xj , which of t remains a real problem.
can be very large at a steep front.

Figure 9 illustrates a situation in which an accurate evalu- 5. CONCLUSIONS AND COMMENTS
ation of ẋ is crucial. The rapid mesh movement is evident
in the solution of Problem I as t 5 1.5 is approached. It Two algorithms are described for the solution of one-
may be seen from the exact solution (2.4) that the value dimensional, time-dependent PDEs that have solutions in-
of u(1, t) changes from approximately 0 to 0.5 as t increases volving moving fronts. The algorithms involve the coupling
through an interval of width O(«) up to 1.5. The finite of a PS post-processing mechanism with a moving mesh
difference time-step control and the time smoothing in the finite difference method, and the key feature of our ap-
continuous time algorithm create a less steep variation in proach is that the FD solution can be improved by post-
time prior to the application of the PS post-processing. processing to give highly accurate results at little extra
Numerical experiments indicate that the accuracy achieved cost. Both algorithms are successful in following and re-
by the discrete time algorithm may be improved beyond solving very sharp profiles. The high accuracy derives from
that shown in Table V if FDTOL is further reduced, but the combination of PS discretisation in space with a high-

order stiff time integrator and a suitable time-step control
mechanism. This is particularly evident in the solution pre-
sented for Problem I at t 5 1.5: the time-step controlTABLE XII
described in Subsection 4.1 reduces the steps appropriatelyMaximum Absolute Errors in the PS Approximation of
when there is rapid mesh movement. Table X shows thatProblem II with « 5 1023, N 5 128, and VELTOL 5 0.5
even in the presence of this type of difficulty it is possible

Dtmax Maximum absolute error to gain spectral accuracy.
The implementation of the algorithms is straightforward,

0.01 6.6 3 1025
and they are both very robust. The results show that the

0.005 4.0 3 1026

approach is very promising and they demonstrate clearly0.001 8.2 3 1029

that smoothing and time-step control are key issues in
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FIG. 9. Rapid mesh movement for Problem I as t approaches 1.5.
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